Al-Farabi Kazakh National University

Introduction to Fermentation

Meiramkul Narmuratova Associate professor

What is Fermentation?

The term "fermentation" is derived from the Latin verb *fervere*, to boil, thus describing the appearance of the action of yeast on the extracts of fruit or malted grain.

The boiling appearance is due to the production of carbon dioxide bubbles caused by the anaerobic catabolism of the sugar present in the extract.

Fermentation is an ancient process and occurs normally in microorganisms that live in the absence of oxygen.

Fermentation meaning....

• **Biochemical fermentation** is generation of energy by the catabolism of organic compounds.

 Industrial fermentation is a chemical engineering term used to describe the processes that utilize a chemical change induced by a living organism or enzyme, in particular bacteria, yeasts, molds, or fungi, that produces a specific product

Fermentation includes the metabolic pathway glycolysis (where a single molecule of glucose is broken down into 2 molecules of pyruvate), as well as additional fermentation reactions that produce a variety of end products (acids, alcohols, gases).

Fermentation is also possible from non-sugar molecules. Even unusual compounds like aromatics (benzoate), glycerol (sugar-alcohol), and acetylene (hydrocarbons) may be fermented by some bacterial species

THE RANGE OF FERMENTATION PROCESSES

There are five major groups of commercially important fermentations:

- 1. Those that produce microbial cells (or biomass) as the product.
- 2. Those that produce microbial enzymes.
- 3. Those that produce microbial metabolites.
- 4. Those that produce recombinant products.

5. Those that modify a compound that is added to the fermentation—the transformation process.

Microbial Biomass

The commercial production of microbial biomass may be divided into two major processes:

- the production of yeast to be used in the baking industry (since 1900)
- the production of microbial cells to be used as human food or animal feed (single-cell protein) (since 1970).

MICROBIAL ENZYMES

Enzymes have been produced commercially from plant, animal, and microbial sources.

Microbial enzymes have the enormous advantage of being able to be produced in large quantities by established fermentation techniques.

Enzyme production is closely controlled in microorganisms and in order to improve productivity these controls may have to be exploited or modified.

Industry	Application	Enzyme	Source
Baking and milling	Reduction of dough viscosity, acceleration of fermentation, increase in loaf volume, improvement of crumb softness, and maintenance of freshness	Amylase	Fungal
	Improvement of dough texture, reduction of mixing time, increase in loaf volume	Protease	Fungal/bacterial
Brewing	Mashing	Amylase	Fungal/bacterial
	Chill proofing	Protease	Fungal/bacterial
	Improvement of fine filtration	β-Glucanase	Fungal/bacterial
Cereals	Precooked baby foods, breakfast foods	Amylase	Fungal
Chocolate and cocoa	ocolate and Manufacture of syrups		Fungal/bacterial
Coffee	Coffee bean fermentation	Pectinase	Fungal
	Preparation of coffee concentrates	Pectinase, hemicellulase	Fungal
Confectionery	Manufacture of soft center candies	Invertase, pectinase	Fungal/bacterial

Table 1.1 Commercial Applications of Enzymes

Industry	Application	Enzyme	Source
Cotton	Low temperature processing	Pectate lyase	Fungal
Corn syrup	Manufacture of high-maltose syrups	Amylase	Fungal
	Production of low D.E. syrups	Amylase	Bacterial
	Production of glucose from corn syrup	Amyloglycosidase	Fungal
	Manufacture of fructose syrups	Glucose isomerase	Bacterial
Dairy	Manufacture of protein hydrolysates	Protease	Fungal/bacterial
	Stabilization of evaporated milk	Protease	Fungal
	Production of whole milk	Lactase	Yeast
	concentrates, ice cream, and frozen desserts		
	Curdling milk	Protease	Fungal/bacterial
Eggs, dried	Glucose removal	Glucose oxidase	Fungal
Fruit juices	Clarification	Pectinases	Fungal
	Oxygen removal	Glucose oxidase	Fungal
Laundry	Detergents	Protease, lipase	Bacterial
Leather	Dehairing, baiting	Protease	Fungal/bacterial
Meat	Tenderization	Protease	Fungal
Paper	Removal of wood waxes	Lipase	Fungal
Pharmaceutical	Digestive aids	Amylase, protease	Fungal

Industry	Application	Enzyme	Source
	Antiblood clotting	Streptokinase	Bacterial
	Various clinical tests	Numerous	Fungal/bacterial
	Biotransformations	Numerous	Fungal/bacterial
Photography	Recovery of silver from spent film	Protease	Bacterial
Protein hydrolysates	Manufacture	Proteases	Fungal/bacterial
Soft drinks	Stabilization	Glucose oxidase, catalase	Fungal
Textiles	Desizing of fabrics	Amylase	Bacterial
Vegetables	Preparation of purees and soups	Pectinase, amylase, cellulase	Fungal

MICROBIAL METABOLITES

Many products of primary metabolism are of considerable economic importance and are being produced by fermentation.

The synthesis of anabolic primary metabolites by wild-type microorganisms is such that their production is sufficient to meet the requirements of the organism.

The industrial microbiologist to modify the wild-type organism and to provide cultural conditions to improve the productivity of these compounds.

Table 1.2 Some Primary Products of Microbial Metabolism and Their Commercial Significance

Primary Metabolite	Commercial Significance
Ethanol	"Active ingredient" in alcoholic beverages
	Used as a motor-car fuel when blended with petroleum
Organic acids	Various uses in the food industry
Glutamic acid	Flavor enhancer
Lysine	Feed supplement
Nucleotides	Flavor enhancers
Phenylalanine	Precursor of aspartame, sweetener
Polysaccharides	Applications in the food industry
	Enhanced oil recovery
Vitamins	Feed supplements

The Interrelationships Between Primary and Secondary Metabolism

